

Capacity Assessment Report

DARGAVILLE WATER TREATMENT PLANT

FOR AWA ENVIRONMENTAL CONSULTANCY

June 21

Client:	Awa Environmental Consultancy
Project Number:	210507
Revision:	0
Date:	June 2021
File Location:	Dropbox (Apex)\Contracts\2021\210507 Awa Environmental Consultancy\8. Report

Document Reference: Dargaville Water Treatment Plant – Capacity Assessment Report										
Ref.	Date	Description	Ву	Checked	Approved					
Rev_0	25/06/2021	Issued for Client Review	T. Wright & T. Board	D. Tharandt	T. Board					

Prepared by: Tessa Wright Apex Environmental Limited, Timaru Level 2, 19 Sophia Street, Timaru 7910 PO Box 893, Timaru 7940 Tel: 021 224 4019 Email: tessa@apexenvironmental.co.nz

Under supervision from: Thomas Board CPEng (1169594) FIChemE Apex Environmental Limited, Auckland 48 Stonedon Drive, East Tamaki, Auckland 2013 PO Box 8245, Symonds Street, Auckland 1150 Tel: 021 982971 Email: thomas@apexenvironmental.co.nz

1. CONTENTS

1.	CON	NTENTS	3
2.	INTE	RODUCTION	4
	2.1	Purpose of Report	4
	2.2	Location	5
	2.3	Background	6
3.	TECI	HNICAL	10
	3.1	Unit Processes	10
	3.2	Flows and Raw Water Quality	15
	3.3	Treated Water Quality	16
	3.4	Process Performance	18
4.	LIMI	ITATIONS	19
5.	SUM	MMARY AND CONCLUSION	20
6.	APP	PENDICES	21
	6.1	Process Flow Diagram	21
	6.2	Engineers Calculations	21

2. INTRODUCTION

2.1 Purpose of Report

Awa Environmental Consultancy (Awa) have contracted Apex Environmental Limited (Apex) to review and evaluate the design flow capacity of the Dargaville Water Treatment Plant. The water treatment plant is an asset of the Kaipara District Council but is operated and maintained by Broadspectrum Ltd. Michael Fowlie is the Broadspectrum Treatment Supervisor and main operator of the Dargaville Water Treatment Plant.

The Dargaville Water Treatment Plant is gravity fed from a catchment within the Kaihu Forest approximately 30 kms north of the plant. It services the populations of Dargaville and Baylys Beach, as well as some industrial and commercial users, with approximately 2,880 m³/d. The treatment plant is a conventional water treatment plant with raw water conditioning, clarification, filtration, chlorine gas disinfection, additional UV disinfection, and treated water storage.

This report focuses on the details and sizing of the individual unit processes and equipment of the plant, as well as the quality of treated water the plant is achieving, in order to evaluate the design capacity of the Dargaville Water Treatment Plant. All major findings of this design analysis and any recommendations are outlined in the report.

2.2 Location

The Dargaville Water Treatment Plant is located approximately at 200 – 210 Hokianga Road, Dargaville. This is around 3 minutes North of the Dargaville Town Centre. Apex Environmental's Engineer visited the Dargaville WTP site on 2 June 2021 to assess the existing plant and gather relevant information from site staff.

Figure 1: Location of Dargaville Water Treatment Plant

Figure 2: Close up of Dargaville Water Treatment Plant

2.3 Background

The Dargaville Water Treatment Plant (WTP) was first constructed in 1964 and the facility was expanded in 1966 to increase capacity. The plant is gravity fed from a catchment area of approximately 1,280 ha of the Kaihu Catchment Streams, which is located 32 km north of the plant. The plant has a consented water intake of 57 L/s and services a population of 4,500 in Dargaville, as well as a population of 230 in Baylys Beach, and several local industrial sites, such as Silver Fern Farms.

The raw water received at the Dargaville Water Treatment Plant is categorised as being low in turbidity and alkalinity, properties which both negatively affect the suspended particles' ability to coagulate and flocculate. Therefore, when raw water arrives at the Dargaville WTP, the addition of 47% alum is made in the slow mixing tanks to give the suspended particles time to coagulate prior to flocculation in the clarifiers. Soda ash is prepared as a 10% batch solution and also added to the mixing tanks to increase the pH and alkalinity of the raw water for optimal coagulation conditions. A 1% batch solution of Polyelectrolyte is finally added to aid in flocculation in the clarifiers.

Figure 3: Alum Batch Tanks

Figure 4: Soda Ash Batch Tank

Figure 5: Polyelectrolyte Storage Area

Following the addition of these chemicals in the mixing tanks, the raw water is equally split between two clarifiers for flocculation. The clarified water overflows into weirs at the top working level of the clarifiers and gravity fed to the filters. The settled sludge blanket is manually drained off and discarded approximately once a month, but in between this time the level is managed by continuously operating bleed valves which are run to waste.

Dargaville Water Treatment Plant

Figure 6: Clarifier 1

There are four rapid sand filters which operate as two sets, each consisting of two filters. The operator completes a manual backwash of these filters every 72 hrs. The turbidity in the filters is monitored to ensure that if it exceeds 0.3 NTU at any time, an automatic backwash is completed.

Figure 7: Two of the four Rapid Sand Filters

Page 7 of 21

The filtered water flows into a clear water tank beneath the plant which feeds either of the two duty/standby UV disinfection units. The water is then chlorinated using chlorine gas and is stored in two reservoirs which provide approximately 27 hrs contact time before the treated water enters the town's reticulation system.

Figure 8: Duty/Standby UV Reactors

Figure 9: Chlorine Storage Room

Dargaville Water Treatment Plant

Page 8 of 21

The Dargaville Water Treatment Plant operator is very passionate about this plant and takes great care and pride in running it. Despite the age of the facilities, the operator's passion for his role is evident in the high quality of the treated water and maintenance of the plant and equipment.

Figure 10: Clarity of water in the clarifiers

Figure 11: Clarity of water in the sand filters

3. TECHNICAL

3.1 Unit Processes

The Dargaville Water Treatment Plant is a conventional water treatment plant designed to treat 4,000 m³/d of raw water to New Zealand Drinking Water Standards (DWSNZ 2005) as depicted in Figure 12.

Figure 12: Dargaville WTP Process Sketch

The plant can be broken down into the following six unit processes:

1. Raw Water Conditioning

The raw water conditioning step incorporates the addition of alum, soda ash, and polyelectrolyte in the slow mixing tanks. Soda ash (10%) and polyelectrolyte (1%) are both made up onsite as batch solutions, alum (47%) is dosed at its delivered concentration. Carrier water pumps take a stream from the clearwater tank to deliver to the slow mixing tanks. The chemical dosing pumps inject into the carrier lines to dose the chemicals.

Primary Equipment:

- Slow mixing tanks 1 & 2 2x 5 m³ tanks at the end of the building
- Alum dosing pump
- Soda Ash dosing pump
- Polyelectrolyte dosing pump
- Polyelectrolyte batch mixing tanks 2x 1 m³ tanks inside the building
- Soda Ash mixing tank 1.5 m³ tank inside the building
- Alum dosing controller
- 3x Carrier water pumps

Figure 13: Alum Dosing Pump

Figure 14: Soda Ash Dosing Pump

Figure 15: Polyelectrolyte Dosing Pump

Figure 16: Chemical Carrier Pumps

Figure 17: Alum Dose Control

Dargaville Water Treatment Plant

2. Clarification

The clarification step takes place in two equal sized square bottom hopper clarifiers. A sludge blanket settles to the bottom leaving a layer of clear water approximately 1.5m deep above it. The clear water is skimmed off the top of the clarifiers via the weirs and travels to the filters.

Primary Equipment:

- Clarifiers 1 & 2 2x 276 m³ tanks
- Hach 1720C low range Turbidity Analyser

3. Filtration

The four Candy Ltd rapid sand filters operate as two banks of filters with turbidity constantly monitored. The filtrate flows into the underground clearwater tank. A backwash pump and blower are used to backwash, and air scour the filters when necessary. The dirty backwash flows into a repurposed underground tank.

Primary Equipment:

- Filters 1, 2, 3, & 4 4x 46 m³ tanks
- 4x Hach 1720E low range Turbidity Analysers
- 2x Hach SC100 universal controller Turbidity Transmitters
- Backwash Pump
- Blower
- Dirty backwash tank 1,100 m³
- Clearwater tank 46 m³

Figure 18: Turbidity Analysers and Transmitters for Filters

4. UV Disinfection

The two UV reactors operate as duty/standby. Each unit is capable of treating 225 m³ at a UVT of 90.5%. There is a flowmeter upstream of both UV reactors and a feed pump on each UV.

Primary Equipment:

- UV reactors 1 & 2 2x Trojan UV Swift SC DO6
- Flowmeter
- RealTech UV254 UVT Analyser
- 2x UV reactor feed pumps

5. Chlorine Gas Disinfection

The chlorine gas can be injected from a 70kg cylinder or a 920kg drum. The gas is injected under vacuum by automatic valves. A carrier water pump takes a stream from the clearwater tank for the gas to be injected into. This super chlorinated water stream is mixed into the main treated water stream before the reservoir. A chlorine gas detection unit in the chlorine storage room monitors for leaks.

Primary Equipment:

- Duty 70kg Chlorine gas cylinder
- Duty 920kg Chlorine gas drum
- 2x Standby 70kg Chlorine gas cylinders
- Chlorinator unit with automatic valves
- Chlorine gas detector unit
- Carrier water pump

6. Storage

The treated water is stored in two reservoirs on site. These are 2,300 m³ and 3,400 m³ each, providing a minimum of 27 hrs of chlorine contact time if the plant is operating at full capacity (210 m³/h). The water leaving the treatment plant is monitored for free available chlorine and pH.

Some properties on the Dargaville reticulation network require booster pumps to receive water from the plant. This includes properties on the upper end of Hokianga Road and the Baylys Beach storage reservoir. There is also a pump onsite for fire water supply.

Primary Equipment:

- Reservoir 1 2,300 m³
- Reservoir 2 3,400 m³
- Grundfos Reticulation booster pump skid
- Fire water pump
- 2x Free Available Chlorine (FAC) and pH analysers

Figure 19: Reticulation Booster Pump Skid

Figure 20: Final FAC and pH Analysers

Figure 21: Treated Water Reservoirs

3.2 Flows and Raw Water Quality

Based on the information provided, the Engineer has assumed a raw water flow of 2,200 to 5,040 m³/d (at 100 – 210 m³/h instantaneous flow over 22 -24 h/d) to discharge up to 4,800 m³ daily.

Table 1 below shows the design flows treated and discharged by the water treatment process.

Ref	Description	Unit
	Raw Water	
1	Raw Water (Daily)	m3/d

Table 1: Design Flows

Ref	Description	Unit	Turndown (Min.)	Ave	Peak	Max	Design
	Raw Water						
1	Raw Water (Daily)	m3/d	2,150	3,100	4,200	5,100	4,200
2	Operation	h/d	17.9	23.8	23.1	23.2	23.1
3	Raw Water (Instantaneous)	m3/h	120	130	182	220	182
4	Raw Water (Instantaneous)	L/s	33	36	51	61	51
	Treated Water						
5	Treated Water Design Flow	m3/d	2,000	3,000	4,000	5,000	4,000
6	Operation	h/d	16.7	23.1	22.0	22.7	22.0
7	Treated Water (Instantaneous)	m3/h	120	130	182	220	182
8	Treated Water (Instantaneous)	L/s	33	36	51	61	51
9	Yield	%	93%	97%	96%	98%	96%
10	Wastewater Flow	m3/d	151	100	200	100	200

A full lab analysis of the current raw water quality entering the treatment plant was not available. The properties shown in Table 2 below are representative of a sample of raw water discussed in the operator's 'C' Grade Assignment on the Dargaville WTP from 1996 and are assumed to still be representative of the current raw water quality.

Table 2: Summary of Raw Water Quality

Ref	Description	Unit	Turndown	Ave	Design	Comments
			(Min.)			
	Raw Water Quality					
1	Turbidity	NTU	1.87	5.7	6	DWSNZ: < 2.5 NTU (GV)
2	рН	pH Units		7.5	7.5	DWSNZ: 7-8/8.5 pH (GV)
3	Total Alkalinity	mg/L (as		32	32	
		CaCO₃)				
4	Total Hardness	mg/L (as		17	17	DWSNZ: < 200 mg/L (GV) [Taste
		CaCO₃)				Threshold 100-300 mg/L]
5	Total Calcium	mg/L		8	8	
6	Total Fluoride	mg/L		0.07	0.07	

3.3 Treated Water Quality

Logs are kept by the operator of plant performance and treated water quality. The treated water quality data which was avaiable for the previous two months are shown in Figures 22-24 below.

Target treatment quality parameters are in line with DWSNZ (2005):

- Target of 1.3 mg/L FAC, but must be greater than 0.3 mg/L and less than 2.0 mg/L
- Target of 0.03 0.05 NTU, less than 0.30 NTU
- pH between 7 and 8

The Dargaville Water Treatment Plant is having no issue meeting these target treatment quality parameters at its current average flow of 2,880 m³/d, as seen in the data below.

Figure 22: Residual Chlorine of Treated Water from Dargaville WTP

Figure 23: Turbidity of Treated Water from Dargaville WTP

3.4 Process Performance

The Dargaville Water Treatment plant is currently producing high quality drinking water at an average flowrate of 2,000 – 3,000 m³/d. The process consists of six unit processes; Raw Water Conditioning, Clarification, Rapid Sand Filtration, UV Disinfection, Chlorine Gas Disinfection, and Treated Water Storage.

The conventional water treatment process is effective, and the plant is capable of treating up to 4000 m³/d (equivalent to 182 m³/h @ 22 h/d) based on the capacity of the unit processes. As the capacity of the Treated Water Reservoirs is very large (a combined 5,700 m³ of storage), the instantaneous discharge from them to reticulation is also quite large (up to 58 L/s) over a finite period.

The throughput of the plant is currently around 120 m³/h (equivalent to approximately 3,000 m³/d over 24 h/d) which was initially thought to be a restriction imposed on the plant by the size of the inlet pipe diameter (250 mm). However, pipeline sizing calculations have revealed that this pipe should be more than capable of transporting up to 220 m³/h, the equivalent of 5,100 m³/h over 24 h/d (refer to Appendix 6.3 General Line Sizing for calculations).

It has also been concluded that the dosing of chemicals and the respective chemical pipeline sizes is not placing any restrictions on the process. However, both the backwash pump and air scour blower appear to be undersized to properly backwash and air scour the filters.

The maximum consented water take for the Dargaville Water Treatment Plant is 57 L/s, which is the only identified restriction on the plant's processing capacity, limiting it to a maximum of around 5,000 m³/d.

4. LIMITATIONS

This report has been prepared by Apex Environmental (Apex) for Awa Environmental Consultancy (Awa) on behalf of the Kaipara District Council and may only be used and relied on by Awa for the purpose agreed between Apex and the Awa as set out in this report.

The design evaluation completed by Apex Environmental is based on As-Built drawings provided by the Kaipara District Council, information gained from one site visit and discussion with the Dargaville Water Treatment Plant operator, and photographs taken of the plant during the site visit.

Kaipara District Council were able to provide some As-Built drawings of the Unit Processes which have been used to estimate the size and capacity of the Unit Processes.

It is worth noting that Kaipara District Council could not provide any piping and instrumentation diagrams (P&IDs) from after the upgrades to the plant that saw UV disinfection introduced. Due to this, the Engineer's understanding of how the plant operates is largely based on the site visit and discussions with the Water Treatment Plant operator.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report, and on assumptions made by Apex described in this report. Apex has no responsibility or obligation to update this report to account for events or changes occurring after the date that the report was prepared.

5. SUMMARY AND CONCLUSION

Awa Environmental Consultancy (Awa) contracted Apex Environmental Limited (Apex) to review and evaluate the design flow capacity of the Dargaville Water Treatment Plant on behalf of the Kaipara District Council.

Apex's Engineer has calculated the drinking flow capacity of the Dargaville Water Treatment Plant (WTP) to be 4,000 m³/d (equivalent to 182 m³/h @ 22 h/d).

The flow capacity of the WTP is not limited by the Unit processes, such as Raw Water Conditioning; Clarifiers; Sand Filters; UV Disinfection or Treated Water Reservoirs. These are all sized to be more than adequate for a flow of 4000 m³/d and are having no issues producing high quality drinking water at the current flows. As the capacity of the Treated Water Reservoirs is very large (a combined 5,700 m³ of storage), the instantaneous discharge from them is also quite large (182 m³/h) over a finite period.

Apex's Engineer has also noted that the throughput of the plant is not restricted by the hydraulics of the plant or the incoming pipeline, although it is currently only producing $2,000 - 3,000 \text{ m}^3/\text{d}$. The only limiting factor identified for the plant's processing capacity is the availability of raw water (both flow and pressure). It was also identified that the backwash pump and air scour blower are undersized for backwashing and air scouring the rapid sand filters.

6. APPENDICES

- 6.1 Process Flow Diagram
- 6.2 Engineers Calculations
- 6.3 General Line Sizing

CLIENT	AWA (on behalf of Kaipara DC)	JOB. NO.	210507 PAGE	1
JOB	Dargaville WTP Capacity Assessment	ENGINEER	THOMAS BOARD DATE	25/06/21
SUBJECT	Engineer's Calculations	CHECKED	TESSA WRIGHT DATE	25/06/21

INDEX

- 1.0 DESIGN BASIS
- 2.0 DESIGN CRITERIA
- 3.0 PROCESS CALCULATIONS
- 4.0 CHEMICALS
- 5.0 PRIMARY EQUIPMENT TECHNICAL SPECIFICATIONS
- 6.0 SITE FACILITIES
- 7.0 MISCELLANEOUS CALCULATIONS
- 8.0 ENGINEER'S ESTIMATE

TABLE OF CONTENTS

1.0 DESIGN BASIS

2.0 DESIGN CRITERIA

- 2.1 Design Flows
 - 2.1.1 Design Flows
 - 2.1.2 Population
 - 2.1.3 Yield Calculation
 - 2.2 Raw Water Quality
 - 2.2.1 Lab Data
 - 2.3 Treated Water Quality
 - 2.4 Other Requirements
 - 2.4.1 Residuals Requirements
 - 2.4.2 Noise Requirements
 - 2.4.3 Other Requirements
 - 2.5 Process Performance

3.0 PROCESS CALCULATIONS

3.1 Process Sketch

- 3.1.1 Process Sketch
- 3.2 Control Loops
 - 3.2.1 Proposed Control Loop of Main Water Stream

3.3 Water Treatment Process

- 3.3.1 Raw Water Feed
- 3.3.2 Raw Water Conditioning
- 3.3.3 Clarifiers
- 3.3.4 Filters
- 3.3.5 UV Disinfection
- 3.3.6 Treated Water Storage
- 3.3.7 Treated Water Pumping & Distribution
- 3.3.8 Residuals

3.4 Anscillary Processes

- 3.4.1 Service Water (Emergency Shower/Eyewash; Site Hoses; Toilet/WH Basin etc)
 - A Safety Shower/Eye Wash [1]
 - B Hose [1]
 - C Lab. Sink & Bench [1]
- 3.4.2 Fixtures & Fittings

4.0 CHEMICALS

4.5 -

- 4.1 C1 Alum (Coagulant)
- 4.2 C2 Polymer (Flocculant) [or PACI]
- 4.3 C3 Soda Ash (pH Control)
- 4.4 C4 Chlorine Gas (Disinfection) [1]
 - Chemical Safety & HSNO (including Chlorine Gas Safety, as required)
 - 4.2.1 Chemical Delivery Apron
 - 4.2.2 Windsock [1 No.]
 - 4.2.3 Chlorine Room Heater [1 No.]
 - 4.2.4 Chlorine Gas Detection [1 No.] (Sensor, Flasher & Hooter)
 - 4.2.5 Automatic shut-off system (West Water [Australia] or Chem Feed

(Delivered By Tanker, IBC or 200L Drum or 20L Container [Chlorine Gas delivered as 1 ton drum or 70-10

4.2.6 Extractor Fan [1 No.]

5.0 PRIMARY EQUIPMENT TECHNICAL SPECIFICATIONS

- 5.1 Backwash Pump (1 No. [N only])
- 5.2 Air Scour Blower (1 No. [N only])
- 5.3 UV Feed Pumps (2 No. [N+1])
- 5.4 Treated Water Pump Skid (2 No. [N+1])
- 5.5 Fire Water Pump (1 No. [N only])
- 5.6 Soda Ash Carrier Water Pumps (1 No. [N only]) {Pre & Post pH Correction}
- 5.7 Alum Carrier Water Pumps (1 No. [N only])
- 5.8 Polymer Carrier Water Pumps (1 No. [N only])
- 5.9 Chlorine Carrier Water Pumps (1 No. [N only])

6.0 SITE FACILITIES

- 6.1 Buildings
- 6.2 Power Supply
- 6.3 Fibre Connection
- 6.4 Stormwater Drainage
- 6.5 Wet Analysers

7.0 MISCELANEOUS CALCULATIONS

- 7.1 Hydraulic Levels & Pressures
- 7.2 Equipment List (including Electrical Loads)
- 7.3 Structural Mass Loads
- 7.4 Chemical Mixing, Reaction & Sampling Times
- 7.5 Heating, Ventilation & Airconditioning (HVAC)

1.0 DESIGN BASIS

1 Carry out a capacity assessment of Dargaville Water Treatment Plant (WTP) Broad plan is:

1.1 Site Visit & Information Gathering: Visit the site, to review the plant which is a conventional water plant, based around Raw Water Conditioning; Clarification; Filtration and Clear Water Storage/Pumping with the Residuals returned to the sewer.

1.2 Information Required: Flows and water quality lab data, drawings, unit process sizing and primary equipment details.
1.3 To determine the capacity, I would also need to have a good look at the hydraulics (pipework and pipeline details and levels) and the control and automation (particularly the desludging, backwash/ripening setpoints) to calculate the yield.
1.4 Engineer's Calculations & PFD: Compile an abridged set of Engineer's Calculations to figure out the capacity of the unit processes/pumps/pipes and Process Flow Diagram (with Mass Balance)

1.5 Technical Note: Prepare a technical note detailing our findings.

- 2 Raw Water Quality: See information provided
- 3 Compliance with DWSNZ 2005 (Rev. 2008/18). Assume > 6 (To Be Confirmed). Check Fe, Mn, As etc
- 4 Multidisciplinary (Process, MEICA, Piping), including Civil/Geotec/Structural, Residuals
- 5 Location: Dargaville Water Treatment Plant, 198 Hokianga Road, Dargaville.
- 6 Budget: < \$5,000 for this work under a standard Short Form Agreement, broken down as follows: Principal Engineer [CPEng] (3 d x \$165/h) + Mileage/lunch (400 kms @ 84c/km + \$60, say \$400)

+ 3 hour check/review by Dr. Matt Savage (@ \$165/h) = \$4850+GST.

7 Design Documents

Typical

- 1 Engineer's Calculations
- 2 Process Flow Diagram (PFD) with Flow Balance
- 3 Piping & Instrumentation Diagrams (P&ID's)
- 4 Engineer's Estimate (CAPEX & OPEX) [+/- 20-30%]
- 5 Design Statement
- 6 Hydraulics (including General Line Sizing, Line Loss, Hydraulic Profile, Pump Calcs)
- 7 Equipment Lists (including Unit porcess, Motors; Valves; Instruments/Analysers)
- 8 GA, Elevations and 3D Mechanical Drawings
- 9 Draft Functional Description, Level 1 (FD)
- 10 Preliminary Civil, Geotech Design

8 Information Required

- 1 Flows: Flow data. Instantaneous and daily
- 2 Raw Water Quality: Raw water quality lab data
- 3 Treated Water Quality: Treated water quality lab data
- 4 Residuals: Waste Discharge Details
- 5 Process & Equipment: Details of existing unit processes & primary equipment details/specs, particularly Reservoir, (
- 6 EICA: Details of existing Electrical, Control & Automation, including Instrument & Wet Analysers details/specs, partic
- 7 Resource Consents: Details of any restrictions/consent requirements particularly around wastewater & stormwater,
- 8 Drawings: Existing Drawings, such as site layout, P&IDs, GA, sections, hydraulic profile etc

All existing layout drawings, All underground service drawings etc, Electrical drawings if possible

- 9 **Survey**: Existing Topo survey
- 10 Chemicals: Chemical inventory, details & preferred supplier
- 11 Geotech information: IL3 Seiemsic Requirement

9 Engineer's Notes

- We had a good day yesterday and got most of the information we need. We are a bit short on existing drawings though, but thought to chase Brian Armstrong from Kaipara District Council today to see if he has any.
- The typical drinking water demand from the plant is 2000-3000 m3/d, with the design flow of 4000 m3/d
- and the max capacity at around 4800 m3/d, as per the draft design flow table below. Even though this plant was built in 1960, it is still running very well producing crystal clear low turbidity,
- chlorinated drinking water, thanks in part to a very passionate/dedicated operator.
- Engineer's Calculations, PFD and abridged report to follow.

Ref	Description	Unit	Turndown	Ave	Peak	Max	Design	Comments		
			(Min.)							
2.0	DESIGN CRITERIA									
2.1	Design Flows									
1	. Description Dargaville WTP, a conventional water treatment plant based around Raw Water									
		Conditioning (Coagulation, Flocculation [& pre-pH control]), Clarification								
		Filtration,	oost pH cont	rol, UV disi	nfection, Ch	lorine Gas I	Disinfectior	n, Treated		
		Water Stor	age followed	d by drinkir	ig water dist	ribution (in	cluding a s	mall boosterPS)		
		Design flov	v is 4,000 m3	3/day (DW	Register 201	.9) with ave	rage flows	2000-3000 m3/d		
	Raw Water									
2	Raw Water (Daily)	m3/d	2,150	3,100	4,200	5,100	4,200	The consented flow is 7		
3	Operation	h/d	17.9	23.8	23.1	23.2	23.1	say 23 h/d		
4	Raw Water (Instantaneous)	m3/h	120	130	182	220	182			
5	Raw Water (Instantaneous)	L/s	33	36	51	61	51	Maximum Consented v		
	Treated Water									
6	Treated Water Design Flow	m3/d	2,000	3,000	4,000	5,000	4,000	Design 4-5 MLD		
7	Operation	h/d	16.7	23.1	22.0	22.7	22.0	typ 20 h/d		
8	Treated Water (Instantaneous)	m3/h	120	130	182	220	182			
9	Treated Water (Instantaneous)	L/s	33	36	51	61	51			
10	Yield	%	93%	97%	96%	98%	96%	typ. ~93-97% Yield		
11	Wastewater Flow	m3/d	151	100	200	100	200			
	Notes									
	Residuals: Constrant	drain from t	he clarifiers	(+ weekly r	nanual desc	udge),				
	Backwash	Sequence (v	which include	es Draindov	vns, Backwa	sh, Filter to	Waste) 1/7	72 h		
	2.1.2 Population									
1	System Population equivalent	ре	7,998	15,000	22,222	25,000	22,222	4,683 (DWO July 2019)		
2	Flow/head.d	L/h.d	250	200	180	200	180			

I System i Opulation equivalent	pe	7,550	15,000	~~,~~~	25,000	22,222	4,005 (DWO July 20)
2 Flow/head.d	L/h.d	250	200	180	200	180	
3 Flow	m3/d	2,000	3,000	4,000	5,000	4,000	
4 People/House	No.	2.0	2.5	3.0	3.0	3.0	
5 Properties	No.	3999	6000	7407	8333	7407	

Ref	Description	Unit	Turndown	Ave	Peak	Max	Design	Comments
			(Min.)					
2.2	Raw Water Quality							
	2.2.1 Lab Data							
(i)	Description							
(ii)	Source Water							
(iii)	Details/Date	-						
(iv)	Temperature	Deg.C						
1	Turbidity	NTU	1.87	5.7			6	DWSNZ: < 2.5 NTU (GV
2	рН	pH Units		7.5			7.5	DWSNZ: 7-8/8.5 pH (G)
3	Total Alkalinity	mg/L (as Ca	1CO3)	32			32	
4	Free CO2	mg/L (at 25	Deg.C)					
5	Total Hardness	mg/L (as Ca	1CO3)	17			17	DWSNZ: < 200 mg/L (G
6	Electrical Conductivity	uS/cm						
7	TDS (Approx)	mg/L						DWSNZ: < 1000 (GV) [<
8	Total Suspended Solids	mg/L						-
9	Aluminium (Dissolved)	mg/L						DWSNZ: < 0.10 mg/L (6
10	Total Boron	mg/L						-
11	Total Calcium	mg/L		8			8	
12	Total Copper	mg/L						DWSNZ: < 1 mg/L (GV)
13	Dissolved Copper	mg/L						_ 、 /
14	Total Iron	mg/L						DWSNZ: < 0.20 mg/L (6
15	Dissolved Iron	mg/L						DWSNZ: < 0.20 mg/L (C
16	Total Magnesium	mg/L						<u> </u>
17	Dissolved Magnesium	mg/L						
18	Total Manganese	mg/L						DWSNZ: < 0.04-0.10 m
19	Dissolved Manganese	mg/L						DWSNZ: < 0.04-0.10 m
20	Total Potassium	mg/L						
21	Dissolved Potassium	mg/L						
22	Total Sodium	mg/L						DWSNZ: < 200 mg/L (G
23	Dissolved Sodium	mg/L						DWSNZ: < 200 mg/L (G
24	Total Zinc	mg/L						DWSNZ: < 1.5 mg/L (G\
25	Zinc (Dissolved)	mg/L						DWSNZ: < 1.5 mg/L (G\
26	Total Fluoride	mg/L		0.07			0.07	0, - (9,
27	Chloride	mg/L						DWSNZ: < 250 mg/L (G
28	Ammonia-N	mg/L						DWSNZ: < 1.5 mg/l (G)
29	Nitrate-N	mg/L						DWSNZ: < 50 mg/L (GV
30	Phophorous, DRP	mg/L						
31	Sulphate	mg/L						DWSNZ: <250 mg/L (G)
32	Arsenic (Dissolved)	mg/L						DWSNZ: < 0.01 mg/l (N
32	Silica (Soluble Reactive)	mg/l						
34	Total Organic Carbon	mg/l						nb. 3 to 4 mg/l conside
35	Dissolved Organic Carbon	- <u>-</u> mg/l						nb. 3 to 4 mg/l conside
36	UV Absorbance, A254 (Linfiltered -	AU/cm-1						
30	Filtered Transmittance	%T at 25/m	m					
22 27	Transmittance	%T at 2541	 m					
20 20	Faecal Coliforms	cfu/100ml						Statistically estimated (
<u>4</u> 0	Total Coliforms	MPN/100m	1					Statistically Estimated (
+0 ∕\1	F-coli	MPN/100m						
+⊥ ∕\?	True Colour							
42 12	Hydrogon Sulnhido	00 mg/l						DW/SNI7 < 0.00
43	Taste & Odour Compounds	шg/ L						טעטאע. < 0.05 mg/L (ל
<u></u>	Angtovin-g (Tovin)	μσ/I						
44 75	2-Methylischerneel (2010)	ug/L						
45 70	Geosmin / Earthy Tarts	אייד / L מייד / I						
46	Geosinini (Earthy Taste)	ng/L						אופאים: Snould be acc
47	Aigai Cell Count	cells/mL						

Ref	Description	Unit	DW	'SNZ	ADWG	Design	Raw	Comments		
	(Determinand)		GV	MAV			Water			
2.3	Treated Water Quality {Drinking \	Nater Quali	ty}							
	2.3.1 Drinking Water Standards for New Zealand 2005 (Revised 2008 & 2018)									
	Table 2.1 MAV for Microbial deter	minands (Pg	<u>g. 7)</u>							
1	Esherichia coli (Ecoli)	#/100mL	-	< 1		-	-			
2	Viruses	#/100mL	-	N/A		-	-			
3	Total Pathogenic Protozoa	#/100mL	-	< 1		-	-			
4	Thermotolerant Organisms	CFU/100mL			< 1	-	-			
5	Protozoa (Crypto/Gardia)	#/100mL			< 1	-	-			
	Table 2.2 MAV for Inorganic deter	<u>minands (Pg</u>	<u>. 8)</u>				-			
6	Antimony	mg/L	-	0.02		-	-			
7	Arsenic	mg/L	-	0.01		-	-			
8	Bariu,	mg/L	-	0.7		-	-			
9	Boron	mg/L	0.5	1.4		-	-			
10	Bromate	mg/L	-	0.01		-	-			
11	Cadmium	mg/L	-	0.004		-	-			
12	Chlorate	mg/L	-	0.8		-	-			
13	Chlorine, FAC	mg/L	-	5		-	-			
14	Chlorite	mg/L	-	0.8		-	-			
15	Chromium	mg/L	-	0.05		-	-			
16	Copper	mg/L	-	2		-	-			
17	Cyanide	mg/L	-	0.6		-	-			
18	Cyanogen Chloride	mg/L	-	0.4		-	-			
19	Flouride	mg/L	0.7-1.0	1.5		-	-			
20	Lead	mg/L	-	0.01		-	-			
21	Manganese	mg/L	0.04-0.1	0.4	0.05	-	-			
22	Mercury, inorganic	mg/L	-	0.007		-	-			
23	Molybdenum	mg/L	-	0.07		-	-			
24	MonoChloroamine	mg/L	-	3		-	-			
25	Nickel	mg/L	-	0.08		-	-			
26	Nitrate	mg/L	-	50	5/10	-	-			
27	Nitrite	mg/L	0.2	3		-	-			
28	Selenium	mg/L	-	0.01		-	-			
29	Uranium	mg/L	-	0.02		-	-			

Ref	Description	Unit	DWS	SNZ	ADWG	Design	Raw	Comments
			GV	MAV		TW	Water	
	Table 2.5 GV for Aesthetic dete	erminands (Pg. 1	11)	-		-	-	
26	Aluminium	mg/L	0.1	-	0.1-0.2	-	-	
27	Ammonia	mg/L	1.5	-	-	-	-	
28	Calcium	mg/L	ee Hardness	5	-	-	-	
29	Chloride	mg/L	250	-	-	-	-	
30	Chlorine	mg/L	0.6-1	5	-	0.9	-	FAC 0.2-1.0 mg/L (0.8 r
31	2-Chlorophenol	mg/L	0.0001	0.01	-	-	-	
32	Colour	TCU	10	-	2/5 PCU	-	-	
33	Copper	mg/L	1		-	-	-	
34	1,2-dichlorobenzene	mg/L	0.001-0.002	1.5	-	-	-	
35	1,4-dichlorobenzene	mg/L).0003-0.00	0.4	-	-	-	
36	2,4-dichlorobenzene	mg/L	0.0003-0.04	-	-	-	-	
37	Ethylbenzene	mg/L	0.002-0.08	0.3	-	-	-	
38	Total Hardness [Ca+Mg]	mg/L (as CaCC	100-200	-	150-200		-	
39	Total Alkalinity	mg/L (as CaCC	03)			-	-	
40	Hydrogen Sulphide	mg/L	0.05	-	-	-	-	
41	Iron	mg/L	0.2	-	0.3	0.1-0.2	-	
42	Magnesium	mg/L	See Hardnes	SS	-	-	-	
43	Manganese	mg/L	0.04-0.1	0.4	5 (0.05 desi	0.02	-	
44	MonoChlorobenzene	mg/L	0.01	-	-	-	-	
45	рН	pH Units	7-8 (8.5)	-	7.4-8.3 (6.5-	8.5)	-	
46	Sodium	mg/L	200	-	-	-	-	
47	Styrene	mg/L	0.004	0.03	-	-	-	
48	Sulphate	mg/L	250	-	-	-	-	
49	Taste	-	Acceptable		-	-	-	
50	Temperature	Deg.C	Acceptable,	Preferably	-	< 25	-	
51	Toluene	mg/L	0.03-0.04	, 0.8	-	-	-	
52	Total Dissolved Solids	mg/L	1000	-	800	-	-	
53	1,2,3 Trichlorobenzene	mg/L	0.01	-	-	-	-	
54	1,2,4 Trichlorobenzene	mg/L	0.005	-	-	-	-	
55	1,3,5 Trichlorobenzene	mg/L	0.05	-	-	-	-	
56	2,4,6 Trichlorophenol	mg/L	0.002	-	-	-	-	
57	Turbidity	NTU	2.5	-	0.5/1	0.05	-	
58	Xylene	mg/L	0.02	0.6	-	-	-	
59	Zinc	mg/L	1.5-3	-	-	-	-	
60	THM	mg/L	-	-	0.05-0.1	-	-	
61	Corrosivity (Langelier Saturatio	n In -	-	-	0 +/- 0.5	-	-	
62	Silica	mg/L (as Si)	-	-	20-30	-	-	
63	Dissolved Organic Carbon	mg/L	-	-	-	-	-	
	<u>Taste & Odour & Toxins</u>							
1	Anatoxin-a	ug/L	< 0.1	< 0.1	3.0	3.0		
2	2-Methylisoborneol (2MIB)	ng/L	< 0.1	< 0.1	5.0	5.0		
3	Geosmin	ng/L	< 0.1	< 0.1	5.0	5.0		

Ref	Description	Unit	Turndown	Ave	Peak	Max	Design	Comments
			(Min.)					
2.4	Other Requirements							
	2.4.1 Residuals Requirem	nents						
	2.4.2 Noise Requirement	ts						
	2.4.3 Other Requiremen	ts						
1	Yield (Typical Conditions)	%						typ. 85-96%, as Calcula
2	Yield (Adverse Conditions)	%						As Calculated
3	Noise (by Day)	dBA						Target level at boundar
4	Noise (by Night)	dBA						
5	Chemical Usage	L/kg/a						Rough Estimate
6	Power Usage	kWh/a						Rough Estimate
7	Odour	Typically o	nly applicabl	le to wastev	vater plants			
8	Vectors	Flies and si	milar vector	s are typica	lly only rele	vent to was	tewater pla	nts, specfiically attached
9	Vermin	Not detaile	d					
10	Security	Security Fe	nce					
11	Vehicle Movements	Not detaile	d					
12	Grafitti	Not detaile	d					

Ref	Description	Unit	Turndown	Ave	Peak	Max	Design	Comments
			(Min.)				0	
2.5	Process Performance							
	Flows & Yields							
1	Raw Water Feed Flow	m3/d						
2	Treated Water Flow	m3/d						
3	Instantaneous Flow	m3/h						
4	Yield	%						
	Treated Water Quality							
	Standard Suite of Determinands fo	r NZDWS, w	vith the follo	wing from a	onsite or hai	ndheld anal	ysers	
1	Turbidity	NTU						
2	рН	pH Units			6.5 - 8.0			Future 6.5-8
3	UVT	%						
5	FAC	mg/L						Typically 0.9mg/L
6	Total Iron	mg/L						Design for NZDWS (or

Design for NZDWS (or k Design for NZDWS (or k Assume UV Disinfection

Treated Water Quality

8 Esherichia coli (Ecoli)

7 Total Mn

The WTP product water shall meet the compliance criteria of the Drinking Water Standards of New Zealand (2005 revised 2018) for all design flows as follows;

• Bacterial Compliance Criterion 2A for continuously monitored chlorine disinfected water

mg/L

#

• Protozoal Compliance 4 log removal credits

The water quality standards associated with the above compliance criteria in the Drinking Water Standards of New Zealand shall be met, and shall meet the minimum water quality criteria outlined in Table 9 The protozoal compliance shall be achieved using filters or filters and UV or membrane.

Page 11 of 33

Ref	Description	Unit	Turndown	Ave	Peak	Max	Design	Comments
			(Min.)					

3.3 Water Treatment Process

3.3.1 Raw Water Feed Description

Gravity fed at 120 m3/h (2280 m3/d over 24 h/d) from 1282 Ha catchment, located 30 kms north of Dargaville, through a 250mm diameter concrete lined steel pipe.

Ref	Description	Unit	Turndown	Ave	Peak	Max	Design	Comments
			(Min.)					
	3.3.2 Raw Water Conditio	ning			-			•
1	Description	Rapid mix	k with a coagu	lant (Alum	or PACl) thr	ough a tap	oing band, '	~ 50m upsteam of
		the 2 slow	v mix (configu	red in parr	allel)			
		Slow Mix	Tanks [2N]					
2	Total Design Flow	m3/d	2,150	3,100	4,200	5,100	4,200	Design for 3720 m3/d
3	Operation	h/d	18	24	23	23	23	
4	Total Instant Flow	m3/h	120	130	182	220	182	360m3/h per DAF
5	Design Flow/Train	m3/d	1075	1550	2100	2550	2100	
6	б Туре	Concrete	open top slow	, mix tanks,	upstream o	of the clarifi	ers	
7	' No. of Tanks	No.	2	2	2	2	2	
8	Design HRT	mins.						Design for 6 mins (Dela
9	Working Volume Required	m3						
10	Diameter	m						A = PI()*d^2/4
11	. Total Tank Height	m						Cross checked with Hyd
12	Freeboard	m						Typical 200mm-500mm
13	Height (to TWL)	m						Cross checked with Hyd
14	Working Volume	m3						Working
15	Hydraulic Retention Time	mins.						Set HRT to 6 mins for D
10	Dhataa							

Ref	Description	Unit	Turndown (Min.)	Ave	Peak	Max	Design	Comments				
L	3.3.3 <u>Clarifiers</u>	I	_ ` <i>'</i>				1	1				
1	Description	Clarification is the process of seperting solids from the liquid stream.										
		Conventio	nal clarificatio	on typically	refers to R	aw Water C	onditioning	g (see above),				
		which refe	rs to Chemica	al addition,	/conditionin	g, rapid mix	xign, floccul	ation and				
		sedimenta	tion.									
		Clarifiers (sedimentatio	n tanks) ar	e designed t	o promote	the seperat	tion of solids from				
		liquids. Th	ese 2 x 62.4 n	n2 hopper	bottom sett	ling tanks,	do not have	e scraper mechanisms,				
		with condi	tioned raw w	ater flowir	ng up throug	gh the sludg	e/floc blan	ket into 8 launders.				
		Solids are	continuously	removed v	via bleed line	es, and man	ually deslue	dged (typ 1/7 days)				
1	Total Design Flow	m3/d	2,150	3,100	4,200	5,100	4,200	Design for 3720 m3/d				
2	Operation	h/d	18	24	23	23	23					
3	Total Instant Flow	m3/h	120	130	182	220	182	360m3/h per DAF				
		L/s	33	36	51	61	51					
4	Design Flow/Train	m3/d	1075	1550	2100	2550	2100					
		m3/h	60	65	91	110	91					
5	Туре	2 x 62.4 m	2 hopper bot	tom settlin	g tanks (Cor	ncrete open	top)					
6	No. of Tanks	No.	2	2	2	2	2					
7	Total Plan Area/clarifier	m2	62.4	62.4	62.4	62.4	62.4					
8	Depth (effective)	m	3.5	3.5	3.5	3.5	3.5	Rough Estimate				
9	Volume/Clarifier	m3	218.4	218.4	218.4	218.4	218.4	Rough Estimate				
10	Actual Rise Rate	m/h	0.96	1.04	1.46	1.76	1.46	Conventional 1.5-2.5 m				
11	Design HRT	h	3.6	3.4	2.4	2.0	2.4	Typ. 1.5-2 h				

12 Photos

Ref	Description	Unit	Turndown	Ave	Peak	Max	Design	Comments
			(Min.)					
	3.3.4 Filters							
1	Description		Rapid Grav	ity Filters, N	/ulti-media,	rectangula	r, open top	for turbidity/suspended
			solids remo	oval. Pre-tre	atment Raw	Water Con	ditoning wi	ith PACl (or similar)
			Typical Filtr	ation Rate:	5-10 m/h			
2	Туре		Constant ra	ite with var	ying water l	evels and in	fluent flow	splitting
3	Design Flow	m3/h	120.0	130.0	182.0	220.0	182.0	
4	Number of Filter Tank(s)	No.	4	4	4	4	4	Square Gravity Filters F
5	Tank Diameter	m						
6	Vessel Length/Height	m	40.62	40.00	40.62	40.00	10.00	- · · · ·
/	Tank Area/filter	m2	10.63	10.63	10.63	10.63	10.63	Engineers Assumption
8	Iotal Area	m2	42.5	42.5	42.5	42.5	42.5	Ture (10 m 2 /m 2 h /F 1
9	Filtration Rate	m/h	2.8	3.1	4.3	5.2	4.3	Typ. < 10 m3/m2.n (5-1
10	Filter Media Desine	m°						
	Filter Media Recipe							
	Anthacite Filter Sand	ton						
	Filter Salid	ton						
	V. Fille Garnet	ton						
	Coarse Garnet	ton						
	Sub-Total	ton	0	0	0	0	0	_
	PED Sketch - Filtration	ton	0	0	0	0	U	
							N	
					— > 06	Dirty B		
				i				
	N						r	
	Filter Feed 01	-	FII TER 1-4	:				
				Ц				
			SAND 4	D				
	N	G	ARNET/GRAVEL	3				
	Air Scour	G	ARNET/GRAVEL	2	(04)	Backv	vash	
		G G	ARNET/GRAVEL	1	· 🗸			
	,	'-> ⊢	ENUM FLOC		¥.			
		-					<u> </u>	
					└→	Filt. Wat	ter	
						\		
					'-→ 03	Filt. to Wa	aste	
	Filter Media Recipe	Depth (mm	<u>ı)</u>					
	Layer 1 (Top)	400	Anthacite [> 1450 kg/i	m3 particle	density] <i>,</i> Eff	ective Size	[D10 (mm)] = 1.2 , Unifo
	Layer 2	600	Filter Sand	[> 300 mm,	UC < 1.4], [typical dens	ity 1560 kg	g/m3 particle density], E
			Preferred s	and media:	18/36 Filter	Sand (0.8 t	o 0.4 mm, <	< 1.4 Uniformity Coefficiε
	Layer 3 (Bottom)	50	V. Fine Gar	net [> 2500) kg/m3 part	icle density]. Effective	Size [D10 (mm)] = 1-3
	Layer 4 (Bottom)	50	Fine Garne	t. Effective S	Size [D10 (m	im)] = 3-6		
	Layer 5 (Bottom)	100	Coarse Gar	net. Effectiv	ve Size [D10	(mm)] = 6-1	.2	
	Depth:Effective Size	1200	L/d10 (filte	r coal) + L/c	110 (sand) +	Garnet >= 1	200	
	Backwash & Airscour Rates							
1	Backwash Rate	m3/m2.h	25.0	30.0	48.0	48.0	18.8	Set by Eng. (range 48-7
2	Backwash Flow	m3/h	266	319	510	510	200	
3	Air Scour Rate	m3/m2.h	40.0	47.1	54.0	54.0	47.1	Set by Eng. (range 54-9
4	Air Scour Flow	Nm3/hr	425	500	574	574	500	

Ref	Description	Unit	Turndown	Ave	Max	Future	Design	Comments	
			(iviin.)						
	Headloss Calcs		400	500	0.05			T : II 500 005	
1	Clean bed headloss @ 2.85 MLD	mm "	400	500	825	800	800	Typically 500mm-825m	
2	Rate of headloss development *1	(mm/h	45	55	60	60	60	Typically 60mm/h-45m	
3	Total estimated headloss after 24	lmm	1480	1820	2265	2240	2240	Typically 1950mm-1900	
	Rough Filter Dimensions								
Δ	Total Tank Height	m							
	Freeboard	m							
5	Top of Media to O/E	m							
7	Modia Dopth	m							
,	CL to Blonum Eleor	 m							
0	GE to Plenum Floor	111							
	<u>Filter Nozzles</u>								
9	Nozzle Spacing	mm	151	[18 No.] & 1	L52 mm [24	No/]		Typically < 180	
10	Min. Nozzle Wall Clearance	mm	< 100	< 100	< 100	< 100	< 100	nozzle closest to the wa	
11	Nozzles Rate	Nozzle/m2	43	43	43	43	43	Typically 19-30 nozzle/	
12	Nozzle Notes	Filter nozzl	e density be	increased t	:o 43 No./m	2improve b	ackwash/ai	r scour distribution,	
		reduce pre	ssure drop a	nd extend	filtration be	fore backwa	ash.		
13	Nozzles/Filter	No/filter	457	457	457	457	457		
14	Total Nozzles	No.	1828	1828	1828	1828	1828		
15	Nozzles to order (+ spares)	No.	-	-	1,901	1,901	1,901	assume 2-4% spares	
16	Nozzle Type	ALTEK Indu	stries 'D' No	zzle, Type [D-36x0.3-M2	24-45-200-s	or similar		
		With the ex	xpanding do	wel the filte	er nozzle is T	Type DSP8/2	28-36x0.3-5	0-200-s	
		plus DG50/28x2 EPDM washer.							
17	Nozzle cap slot size	. , mm	0.30	0.30	0.30	0.30	0.30	NB. Specified filter sand	
18	Filter Floor Plate Thickness	mm		Assume 8	to 28 mm			•	

19 Photos

Ref	Description	Unit	Turndown	Ave	Peak	Max	Design	Comr	nents
			(Min.)						
	3.3.5 <u>UV Disinfection</u>								
1	Description	Filtrate pas	sses through	a fully auto	mated UV r	eactor (2 N	o [N+1]) w	ith a variable	
		UV dose. A	A UVT analys	er will mon	itor UV tran	smissivity f	or complia	nce.	
2	Client & Legislative Requirements	System De	sign will exce	ed the req	uirements o	f 3/4 log cr	edits, by pr	oviding	
		5 Log credi	ts, upto 2 fo	r the Cartri	dge filters a	nd 3 (perha	ps future 4	l) for UV disin	fection,
		In light of t	he recent Ha	avlock Nort	h Report, w	e have inclu	ided multip	ole barriers	
		to future p	roof this pla	nt for futur	e complianc	e requirem	ents.		
		Critical spa	res (Lamps [2], Sleeves	[2], Sensor [1] & ballast	: [1] to be h	neld on-site	
3	Design Flow	m3/h	120	130	182	220	182		
4	Number of Units	No.	1	1	1	1	1		
5	Configuration	No.	2	2 No. (1 dut	y, 1 standby	r)			
6	Flow Per Unit	m3/h	120.0	130.0	182.0	220.0	182.0		
7	Protozoa Reduction	Log	> 3	> 3	> 3	> 3/4	> 3	to provide	bacterial coi
8	Design UV Transmittance	%/1 cm	97%	95%	92%	95%	95%		
9 UV Unit type Trojan DO6 UV Rector for 354 m3/h (@ 97% UVT); 334 m3/h (@ 95% UVT); 255 n									UVT); 255 n
10	Acceptable Flow/unit	m3/h	354	334	255	255	334	Typical sizi	ng:
11	UV Dose	mJ/cm2	> 97	> 95	> 92	> 92	> 95		
12	Туре	EQUIPMEN	IT DETAILSTr	ojanUVSwif	t™SC D03∎ [Delivered do	ose is valida	ated - Trojanl	JVSwiftSC - D
13	Features	Auto-wipe	r. Limit starts	s to < 4 time	es/day. The	UV units ca	n stay ener	rgised for 30	mins to 1
		hour, with	out water flo	wing throu	gh the unit				
		Communic	ation. Our pi	referred pro	otocol is Eth	ernet IP, w	ith Modbus	s TCP as an al	ternative.
14	Material	-		316	SL SS				
15	Lamp Power	kW	2	2	2	2	:	2	
16	Trojan Sizing Information								
	Trojan DO3 UV Rector	for 155 m3,	/h (@ 97% U	VT)					
	Trojan DO6 UV Rector	for 354 m3,	/h (@ 97% U	VT); 334 m	3/h (@ 95%	UVT); 255 r	m3/h (@ 92	2% UVT)	
	Trojan DO12 UV Recto	or for 690 m	3/h (@ 97% I	UVT); 600 n	n3/h (@ 95%	6 UVT)			
	Trojan DO18 UV Recto	or for 942 m	3/h (@ 94% I	UVT); 853 n	n3/h (@ 93%	6 UVT); 778	m3/h (@ 9	92% UVT)	
	UVT	%	92%	93%	94%	95%	97%	В	S
	DO3	m3/h	100	110	122	140	155	20-25	35-40
	DO6	m3/h	255	280	309	334	354	35	45
	DO12	m3/h	541	593	622	645	690	54	70
	DO18	m3/h	778	853	942	950	1050	73	95

17 Photos

l

Page 17 of 33

Ref	Description	Unit	Turndown	Ave	Peak	Max	Design	Comments
			(Min.)					
	3.3.6 <u>Treated Water Storage</u>	<u>e</u>						
1	Description	Two (2) La	rge Concrete	Circular R	eservoirs. Re	eservoir 1 (2	2300 m3) &	Reservoir 2 (3400)
		Typically T	reated Wate	r Tank (x m	3, with 30 m	nins HRT allo	owing for B	affling factor)
1	Treated Water (Daily)	m3/d	2000	3000	4000	5000	4000	
2	Operation	h/d	17	23	22	23	22	
3	Treated Water (Instantaneous)	m3/h	120	130	182	220	182	
		L/s	33	36	51	61	51	
4	Туре	Cylindrical	closed top, c	oated stee	l Tank (to AS	5/NZ)		
		Capacity 1	.000,000 L D	iameter 14	.516m, Heig	ht (to TWL)	6.144m).	
		(Reliant Pe	rmastore Ta	nks & Silos)				
		Consider IL	3 Siesmic/Ea	rthquake F	Rating & Baf	fling factor		
5	No. of Tanks	No.	2	2	2	2	2	
6	Required Working Volume	m3	2300	3400	5700	5700	5700	1000 m3 min
7	Diameter	m						A = PI()*d^2/4
8	LxW	m2						
9	Total Tank Height	m						Cross checked with Hy
10	Freeboard	m						200mm-500mm Typica
11	Height (to TWL)	m						Cross checked with Hy
12	Calculated Working Volume	m3						93.5 m3 existing
13	Check	-						
14	Total Tank Volume	m3	2300	3400	5700	5700	5700	Assume 80%-90% full
15	Hydraulic Retention Time	mins.	1150.0	1569.2	1879.1	1554.5	1879.1	HRT (h) = Vol (m3)/ Flo
16	Hydraulic Retention Time	h	19.2	26.2	31.3	25.9	31.3	
17	Theoretical Detention Time, TDT	mins.	1150	1569	1879	1555	1879	TDT=V/Q
18	Baffling Factor, BF	-	0.70	0.50	0.30	0.5	0.5	BF of 0.15 used for Sed
19	Contact Time, T	mins.	805.0	784.6	563.7	777.3	939.6	T (> 5-30 mins)= TDT x
20	Contact Time, T	h	13.4	13.1	9.4	13.0	15.7	
21	FAC Dose	mg/L	0.8	0.8	0.8	0.8	0.8	
22	CT Value	mg.min/L	644.0	627.7	450.99	621.8	751.6	> 3.3 to 8 mg.min/L (No
23	Low Level Setpoint	%	10%	10%	10%	10%	10%	
24	Typical Photos & Figure							

Table 15.2: Baffle factors for use in measuring detention time

Baffle condition	Baffle factor	Baffle description
Unbaffled (mixed flow)	0.1	None, agitated basin, very low length to width ratio, high inlet and outlet flow velocities.
Poor	0.3	Single or multiple unbaffled inlets and outlets, no intra-basin baffles.
Average	0.5	Baffled inlet or outlet with some intra-basin baffles.
Superior	0.7	Perforated inlet baffle, serpentine or perforated intrabasin baffles, outlet weir or perforated launders.
Perfect (plug flow)	1.0	Very high length to width ratio (pipeline flow), perforated inlet, outlet, and intra-basin baffles.

Figure 15.1: Baffle characteristics of a pipe and tank

Baffling Factor = 0.1

Table 15.5: Chlorine C.t values for 99 percent inactivation (2 logs)

Micro-organism	C.t values	Conditions
Bacteria	0.08 mg.min/L	1-2°C; pH 7
	3.3 mg.min/L	1–2°C; pH 8.5
Viruses	12 mg.min/L	0-5°C; pH 7-7.5
	8 mg.min/L	10°C; pH 7-7.5
Giardia	230 mg.min/L	0.5°C; pH 7-7.5
	100 mg.min/L	10°C; pH 7-7.5
Cryptosporidium	Not inactivated	

Ref	Description	Unit	Turndown	Ave	Max	Future	Design	Comments
			(Min.)					
	3.3.7 Residuals (Wastewate	er) Manager	nent					-
	A.1 Residuals	Sump						
1	Description	An old 110	0 m3 enclos	ed concrete	e reservoir h	as been reti	rofitte into	a dirty
		backwash	ouffer tank					
2	Design Flow	m3/d	151	100	200	100	200	
		m3/h	266	319	510	510	200	Dirty B/W Flow
3	Туре	-	Concrete u	nderground	ltank			
4	No. of Tanks	No.	1	1	1	1	1	
5	Required Working Volume	m3						
6	Diameter	m						
7	Total Tank Height	m						
8	Freeboard	m						
9	Height (to TWL)	m						
10	Calculated Working Volume	m3	1100.0	1100.0	1100.0	1100.0	1100.0	
11	Total Tank Volume	m3	-	-	-	-	-	
12	Hydraulic Retention Time	h	175.4	264.0	132.0	264.0	132.0	Typically for 2 hours
		mins	248.5	207.1	129.4	129.4	330.0	

13 Typical Photos & Figure

Ref	Description	Unit	Turndown (Min.)	Ave	Peak	Max	Design	Comments

3.4 Anscillary Processes

3.4.1 Service Water (Emergency Shower/Eyewash; Site Hoses; Toilet/WH Basin etc)

A Safety Shower/Eye Wash [1]

B Hose [1]

C Lab. Sink & Bench [1]

3.4.2 Fixtures & Fittings

Ref	Descriptio	n	Unit	Turndown	Ave	Peak	Max	Design	Comments		
				(Min.)							
4.0	CHEMICALS	(Delivered	By Tanker, I	BC or 200L [Drum or 20L	Container	[Chlorine Ga	as delivered	as 1 ton drum or 70-10		
	4.1 C1	Alum (Coag	gulant)								
	4.2 C2	Polymer (Fl	locculant) [d	or PACl]							
	4.3 C3	oH Control)									
	4.4 C4	Chlorine Ga	as (Disinfect	ion) [1]							
	4.5 -	Chemical S	hemical Safety & HSNO (including Chlorine Gas Safety, as required)								
		4.2.1	Chemical D	elivery Apro	on						
		4.2.2	Windsock [1 No.]							
	4.2.3 Ch			Chlorine Room Heater [1 No.]							
		Chlorine Ga	as Detection	[1 No.] (Se	nsor, Flashe	r & Hooter)					

- 4.2.5 Automatic shut-off system (West Water [Australia] or Chem Feed
- 4.2.6 Extractor Fan [1 No.]

Ref	Description	Unit	Turndown	Ave	Peak	Max	Design	Comments
			(Min.)					
	4.1 C1 Coagulant (Polyalumin	ium Chloric	le, PACl {Tr	ade Name '	LIQUIPAC	[N+1]	
1	Description	Coagulant	is dosed to a	lestabilise d	colloidal ma	terial in the	raw water,	so that
		it forms lar	ger particul	ates which	can be remo	oved by floto	ation	
		Coagulant	is also adde	d to aid the	agglomera	tion of fine j	floc such th	at
		removal by	the Settler	s is ensurea	Ι.			
		A basic jar	test was car	ried out by	Ixom (chem	ical supplie	r)	
2	Raw Water (Daily)	m3/d	2150	3100	4200	5100	4200	nb. Effective Coagulation
3	Operation	h/d	18	24	23	23	23	
4	Raw Water (Instantaneous)	m3/h	120.0	130.0	182.0	220.0	182.0	We carried out some Ja
		L/s	33	36	51	61	51	
5	Dose Rate (based on 100%)	mg/L	10	15	20	20	15	The best results came v
6	Quantity required (based on 100%	kg/d	22	47	84	102	63	use 20-40 mg/L, but us
7	Commercial Concentration	w/w	50	40	30	30	40	PACI SDS: Clear Liquid,
8	Specific Gravity	-	1.2	1.2	1.2	1.2	1.2	
9	Quantity of Commercial Chemical	kg/d	43	116	280	340	158	
10	Flowrate of Commercial Chemical	L/d	35.8	96.9	233.3	283.3	131.3	
11	Contingency	%	2%	0%	2%	2%	2%	
12	Expected Commercial Flowrate	L/d	37	97	238	289	134	
		L/h	2.0	4.1	10.3	12.5	5.8	
13	Water Stream ACH Consumption	L/a	13341	35359	86870	105485	48864	
14	Guaranteed	L/a	15000	39000	96000	117000	54000	Add another 10 conting
15	Raw Water pH	-	7.5	7.5	7.5	7.5	7.5	
	Dosing Pumps [N+Box]							
16	Number of Duty Dosing Pumps	No.	1	1	1	1	1	1 duty
17	Number of Standby Dosing Pumps	No.	0	0	0	0	0	1 Standby
18	Total number of Dosing Pumps	No.	1	1	1	1	1	
19	Flowrate required per pump	L/h	2.0	4.1	10.3	12.5	5.8	
20	Selected Capacity of pump	L/h	30.0	30.0	30.0	30.0	30.0	Duty Point 30 L/h, 7 ba
21	Preliminary head required	bar	7	7	7	7	7	
22	Commercial Concentration (w/v)	w/v	50%	40%	30%	30%	40%	
	Storage Tank							
23	Principal's Requirements	The Contra	ctor shall co	nfirm that	all chemicals	s required sl	hall be com	mercially available and i
24	Total Design Flowrate	L/d	37	97	238	289	134	
25	Total Max. Flowrate	L/h	30.0	30.0	30.0	30.0	30.0	
26	Storage volume required	L	1097	2906	7140	8670	4016	
27	Type of Storage Tank		PE Tank [OI	R Glass Line	ed PVC]			
28	Number of Tanks	No	1	1	1	1	1	
29	Volume per Tank	litres	5000	5000	5000	5000	5000	Grundfos Tanks: 40, 75
30	Storage Capacity	days	137	52	21	17	37	30 d Ave Dose & Max P
	Working Volume (30d)	L	1097	2906	7140	8670	4016	APD Hazsure Standard
	Delivery Volume (14d)	L	512	1356	3332	4046	1874	APD Hazsure Non- Stan
_	Total Volume	L	5512	6356	8332	9046	6874	
- 31	System Selected							

31 System Selected

Liquid PACl Powder PACl Liquid PACl Storage Tank 7500 L (assuming 5000L min delivery) Mixing (1000L) & Dose Tank (1500 L)

Ref	Description	Unit	Turndown	Ave	Peak	Max	Design	Comments
			(Min.)					
	4.2 C2 Flocculant	- Polymer P	owder (Wa	ter Stream I	Dosing [1], S	olids Strea	m [Thicken	ing & Dewatering] Dosi
1	Description	Flocculant	(Polymer) fo	or floculation	n of solids in	the Floc Ta	nk	
		Use Powde	red Polyme	r in prefence	e to Liquid/E	mmulsion,	to reduce (OPEX costs
2	Raw Water (Daily)	m3/d	2150	3100	4200	5100	4200	
3	Operation	h/d	17.9	23.8	23.1	23.2	23.1	
4	Raw Water (Instantaneous)	m3/h	120	130	182	220	182	
5	Dose Rate (based on 100%)	mg/L	0.15	0.25	1.0	0.25	0.2	Typical Poly Dose 0.15
6	Quantity required (based on 100%	kg/d	0.3	0.8	4.2	1.3	0.8	Typical Dose Rate (also
7	Commercial Concentration	w/w	0.15	0.15	0.15	0.15	0.20	Typ. 0.1 to 0.2 to 0.4%
8	Specific Gravity	-	1.0	1.0	1.0	1.0	1.0	Assumed, Cationic
9	Quantity of Commercial Chemical	kg/d	215	517	2800	850	420	
10	Flowrate of Commercial Chemical	L/d	215.0	516.7	2800.0	850.0	420.0	
11	Contingency	%	2%	2%	2%	2%	2%	
12	Expected Commercial Flowrate	L/0	219.3	527	2856.0	80/ 210455	428	
13	water Stream Chemcial Consumpt	L/a	80045	192355	1042440	310455	172000	Add another 100/
14		L/a	89000	212000	£0	549000	1/3000	Aud another 10% conti
15	naw water pH	-	0.9	0.9	0.9	0.9	0.9	
10	Number of Duty Design Dumps	No	1	1	1	1	1	1.2 duty
10	Number of Standby Daving Pumps	NO.	1	1 1	1 1	1 1	1	1-2 uuly
10	Total number of Desing Pumps	NO.	1 2	1 ว	1 2	1 2	1 2	T noven share
10	Flowrate required per pumps	NO. 1 /b	2 10 0	2 22 1	2 172 0	∠ ۸ ד <u>د</u>	۲ ۱۹ <i>۲</i>	
19	Selected Capacity of nump	L/11 1 /b	12.Z	22.1	20 0 20 0	37.4 20.0	20 0 7010	Duty Daint 201 /h 7 ha
20	Broliminany bood required	L/II bor	30.0 7	30.0 7	50.0 7	50.0	30.0 7	Duty Point 30 L/n, / Da
21	Commercial Concentration (w/w)	uar w/v	/ E00/	/ E00/	/ 500/	/ E00/	/ E00/	
22	Storage Tank	vv/v	50%	50%	50%	50%	50%	
^ 2	Storage Tallk Principal's Requirements	The Contro	ctor shall co	nfirm that a	ll chemicals	required ch	all he com	mercially available and i
23 74	Total Design Flowrate		210	527	2826	267	/179	merciality available allu li
24 25	Total Max Flowrate	L/U I/h	20 0 213	327	2000 200	20.0	420 20 0	
25	Storage volume required	L/ II	6579	15810	30.0	12128	50.0	
20	Type of Storage Tank	L	PF Tank [OI	R Glass Liner		12130	5556	
28	Number of Tanks	No	1	1	1	1	1	
20	Volume per Tank	litres	1000	1000	1000	1000	1000	Grundfos Tanks· 40 75
30	Storage Capacity	davs	5	1.9	0	1	2000	Design > 14 d - 30 d @
31	Tank Selected	Mixing (500)L) & Dose T	ank (1000 L)	-	2	
51	Polymer Make-up Unit		,	(1000 L	1			
32	Mixing Tank Capacity	L	500	500	500	500	500	12 Batches/d
33	Dose Tank Storage Capacity	d	4.6	1.9	0.4	1.2	2.3	
34	Dose Tank Storage Capacity	h	109	46	8	28	56	
35	Dose Tank Storage volume require	L	1000	1000	1000	1000	1000	
36	Type of Storage Tank	-	Mixing (500)L) & Dose T	ank (1000 L)		
37	Number of Dose Tanks	No.	1	1	1	, 1	1	
38	Volume per Tank	litres	1,000	1,000	1,000	1,000	1,000	
39	Total Volume	litres	1,000	1,000	1,000	1,000	1,000	
	Carrier Water Line			,	-	-		
40	Flowrate	m3/h	2.0	2.5	3.0	3.0	3.0	Typ. 3 m3/h
41	No. of Lines	No.	2	2	2	2	2	
42	Flow/line	m3/h	1.0	1.3	1.5	1.5	1.5	i i i i i i i i i i i i i i i i i i i
43	Pipe Dia	NB	25	25	25	25	25	
44	Cross Sectional Area	m2	0.000491	0.000491	0.000491	0.000491	0.000491	
45	Velocity	m/s	0.57	0.71	0.85	0.85	0.85	
46	Dilution Factor	-	48	60	71	71	71	Тур. 50-100

Ref	Description	Unit	Turndown	Ave	Max	Future	Design	Comments
			(Min.)					
	4.2.1 C2 Polymer Po	owder Make	e, Storage 8	Dosing [N	+Box]			
1	Description	Polymer Po	wder Make	-up				
		Polymer en	nulsion for V	Vater Strea	m and Sludg	e Thickenin	g and Dew	atering
2	Water Stream Dosing	kg/d	215.0	516.7	2,800.0	850.0	420.0	
3								
4								
5	Sub-Total	kg/d	215.0	516.7	2,800.0	850.0	420.0	
6	Flowrate of Commercial Chemical	L/d	215.0	516.7	2800.0	850.0	420.0	
7	Contingency	%	2%	2%	2%	2%	2%	
8	Expected Commercial Flowrate	L/d	219	527	2856	867	428	
8	Principal's Requirements	The Contra	ctor shall co	nfirm that a	all chemicals	s required sl	nall be com	mercially available and i
9	Total Design Flowrate	L/d	219	527	2856	867	428	
10	Total Max. Flowrate	L/h	27.4	65.9	357.0	108.4	53.6	
11	Storage volume required	L	6579	15810	85680	26010	12852	
12	Type of Storage Tank		PE Tank [O	R Glass Line	d PVC]			
13	Number of Tanks	No	1	1	1	1	1	
14	Volume per Tank	litres	1000	1000	1000	1000	1000	Grundfos Tanks: 40, 75
15	Storage Capacity	days	5	1.9	0	1	2	Design > 14 d - 30 d @
16	Tank Selected	Mixing (500	DL) & Dose T	ank (1000 l	L)			

Ref	Description	Unit	Turndown	Ave	Max	Future	Design	Comments
			(Min.)					
	4.4 C3.2 Soda Ash Make-u	p & Dosing	(Dosing [N+	·Box])			-	-
А	Soda Ash Make-up & Dosing							
1	Description	Liquid Sod	a Ash (made	up from p	owder) is ac	curately dos	ed to raise	the pH of the treated
		water, to e	ensure NZDW	/S GV's of 7	7.0 to 8.5, a	dded pre-dis	infection.	
		Always wit	hin range 7	to 7.75, wit	h target 7.2	25 +/-0.25		
2	Raw Water (Daily)	m3/d	0	0	0	0	0	
3	Operation	h/d	215	517	2800	850	420	
4	Raw Water (Instantaneous)	m3/h	215	517	2800	850	420	
5	Dose Rate (based on 100%)	mg/L	2.1	2.7	4.6	4.6	2.8	Dose Rate
6	Quantity required (based on 100%	kg/d	0.0	0.0	0.0	0.0	0.0	
7	Commercial Concentration (w/w)	w/w	100	100	100	100	100	100% w/w Powder, bu
8	Specific Gravity	-	1.00	1.00	1.00	1.00	1.00	SG. 1.23-1.33 (@ 20 De
9	Quantity of Commercial ACH requi	kg/d	0	0	0	0	0	
10	Flowrate of Commercial ACH requi	L/d	0.0	0.0	0.0	0.0	0.0	
11	Commercial Flowrate (Instant)	L/h	0.00	0.00	0.00	0.00	0.00	
12	Contingency	%	2%	2%	5%	5%	5%	
13	Expected Commercial Flowrate	L/d	0.0	0.0	0.0	0.0	0.0	
14	Commercial Flowrate (Instant)	L/h	0.0	0.0	0.0	0.00	0.0	

Ref	Description	Unit	Turndown	Ave	Max	Future	Design	Comments
			(Min.)					
	4.5 C4 Chlorine Gas (Dis	infection) [1]	[Existing]					
	<u>Chlorine Gas (Disinfe</u>	ection) Calcula	ations					
1	Description	Chlorine g	as injected in	to carrier v	vater			
2	Туре	-		Liquif	ied gas			
3	Raw Water (Daily)	m3/d	2000	3000	4000	5000	4000	
4	Operation	h/d	16.7	23.1	22.0	22.7	22.0	
5	Raw Water (Instantaneous)	m3/h	120.0	130.0	182.0	220.0	182.0	
		L/s	33	36	51	61	51	
6	Chlorine Dose Rate	mg/L	0.5	1.5	2.5	5.0	3.0	
7	Quantity of Chlorine required	kg/d	1.0	4.5	10.0	25.0	12.0	Max. Cl2 withdrawal ra
8	Daily consumption	kg/h	0.060	0.195	0.455	1.100	0.546	flow rate 0.6 kg/h (per
9	Rotameter flow	g/h	60	195	455	1100	546	0 to 500 g/ Currently se
10	Chlorinator Rotameter Analogue	e %	10%	33%	76%	183%	91%	
11	No of chlorinators	No.	1	1	1	1	1	
12	Chlorinator Arrangement	-		1 duty	only (N)			
13	Chlorinator Duty	kg/h	1.5	1.5	1.5	1.5	1.5	
14	Number of Duty Chlorine Storag	e No.						
15	Number of Standby Chlorine Sto	ra No.						
16	Number of Chlorine Storage in S	to No.						
17	Total Number of Chlorine Storag	ge No.						
18	Storage Type	kg	1210	1210	1210	1210	1210	
19	Storage Capacity	days	1210	269	121	48	101	
	Dilution Water Pipe Sizing							
20	Carrier Water Flow	m3/h						
21	Carrier Water Flow	L/s						
22	Carrier Water Pressure	Bar						
23	Dilution Water Pipe Size	mm						
24	Velocity	m/s						

Ref	Description	Unit	Turndown	Ave	Peak	Max	Design	Comments		
			(Min.)							
5.0	PRIMARY EQUIPMENT TECHNICA	L SPECIFICA	TIONS							
	5.1 Backwash Pump (1 No	. [N only])								
1	Description	Backwash I	Pump (N+on	ly).						
		Dry Mount	Dry Mounted on DOL/VFD. Duty Point 200 m3/h @ 1.1 Bar[g] TDH							
		(Cast Iron H	lousing; Cas	t Iron Impe	ller)					
2	No. of Pumps	No.	1	1	1	1	1			
3	Configuration	d/a/s	1 No. (1 duty only [N])							
4	Duty Flowrate	m3/h	200	200	200	-	200	Duty Point 200 m3/h, 1		
5	Head	bar	0.9	1	1.1	-	1.1			
6	Efficiency	%	78.6%	78.6%	78.6%	-	78.6%			
7	Motor Rating, Rated Power P2	kW	6.1	6.8	7.5	-	7.5	Calculated		
8	Speed	rpm	1473 rpm (on DOL/VFE))					
9	Manufacturer	-	Grundfos E	nd Suction I	Dry Mounte	d Centrifuga	al Pump			
10	Model	-	Grundfos NBG 125-100-200/211 AFE2CBQQE (Product no. 99801232)							
11	Material	-	Cast Iron Housing; Cast Iron Impeller							
12	Gross Weight/unit	kg	Net Weight 160 kg, Gross +10%=181 kg (Shipping Volume -0.509 m3)							
13	Pump Curve		Typical Pump Photo							

Ref	Description	Unit	Turndown	Ave	Peak	Max	Design	Comments	
			(Min.)						
	5.2 Air Scour Blower (1 No	. [N only])			•	•	-	•	
1	Description	Air Scour	Blower, for Fi	lters (1 No	. [N only]), t	hat meets tl	he followin	g duty	
		point for the Conventional Filtration, to air scour the filters. The pressure is only 0.5 Bar[g]							
		enough to	o lift the sand	media filte	er bed aroun	d 40% bed	expansion,	for a good air scour	
		and back	wash.						
2	No. of Blowers	No.	1	1	1		1	1 duty + boxed spare	
3	Configuration	d/a/s	1 No. (1 du	ty only)					
			Blower for	air scour of	f 1 filter at a	time			
4	Duty Flowrate	Nm3/h	330	330	500		330	Duty Point 330 m3/h, 0	
5	Head	bar	0.5	0.5	0.5		0.5	Typically 0.5 Bar	
6	Motor Rating	kW	5.5	5.5	15		5.5	3 Phase 50 Hz Motor (\	
7	Type & Model	Hwang Ha	ae 3 Phase Rir	ng Blower M	Notor				
8	Typical Blower Photo	nb. Pressi	ure Filter Ope	rating Pres	sure 1 to 3 k	bar			

Ref	Description	Unit	Turndown	Ave	Peak	Max	Design	Comments		
			(Min.)							
	5.3 UV Feed Pumps (2 No.	[N+1])								
1	Description	UV Feed Pu	umps (2 No.	[N+1])						
		Dry Mount	ed on DOL/\	/FD. Duty Po	oint 240 m3	/h @ 1.2 Ba	r[g] TDH			
		(Cast Iron H	lousing; Cas	t Iron Impel	ller)					
2	No. of Pumps	No.	1	1	1	1	1			
3	Configuration	d/a/s	a/s 2 No. (1 duty, 1 Standby [N+1])							
4	Duty Flowrate	m3/h	260	240	200	-	240	Duty Point 240 m3/h, 1		
5	Head	bar	1	1.2	1.3	-	1.2			
6	Efficiency	%	70.1%	70.1%	70.1%	-	70.1%			
7	Motor Rating, Rated Power P2	kW	9.9	11.0	9.9	-	11.0	Calculated		
8	Speed	rpm	1460 rpm (o	on DOL/VFC))					
9	Manufacturer	-	Grundfos E	nd Suction I	Dry Mounte	d Centrifuga	al Pump			
10	Model	-	Grundfos N	BG 150-125	5-200/221 (F	Product No.	96770787)	[Discontinued]		
11	Material	-	Cast Iron Housing; Cast Iron Impeller							
12	Gross Weight/unit	kg	Net Weight	245 kg, Gro	oss +10%=26	56 kg (Shipp	oing Volum	e 0.96 m3)		
13	13 Pump Curve Typical Pump Photo									

Ref	Description	Unit	Turndown	Ave	Peak	Max	Design	Comments			
			(Min.)								
	5.4 Treated Water Pump	Skid (2 No. [N+1])								
1	Description	Treated W	ater Pump Sl	kid (2 No. [l	N+1])						
		Dry Mount	ed on an inte	ergratefd V	FD. Duty Poi	nt 17 m3/h	n @ 5.5 Bar	[g] TDH			
		(Cast Iron	Housing; Cas	t Iron Impe	ller)						
2	No. of Pumps	No.	1	1	1	1	1				
3	Configuration	d/a/s	2 No. (1 duty, 1 Standby [N+1])								
4	Duty Flowrate	m3/h	260	240	200	-	17	Duty Point 17 m3/h, 5.			
5	Head	bar	1	1.2	1.3	-	5.54				
6	Efficiency	%	70.1%	70.1%	70.1%	-	63.1%				
7	Motor Rating, Rated Power P2	kW	9.9	11.0	9.9	-	4.0	Calculated			
8	Speed	rpm	360-3530 rp	om (on inte	grated VFD)						
9	Manufacturer	-	Grundfos V	ertical Dry	Mounted Cer	ntrifugal Pu	ımp				
10	Model	-	CRE15-5 A-F-A-E-HQQE (Product No. 96512709)								
11	Material	-	Cast Iron Ho	ousing; Stai	nless Steel Ir	npeller					
12	Gross Weight/unit	kg	Net Weight 79 kg, Gross +10%=87 kg (Shipping Volume ? m3)								
13	Pump Curve		Typical Pump Photo								

Ref	Description	Unit	Turndown	Ave	Peak	Max	Design	Comments
			(Min.)					
	5.5 Fire Water Pump (1 No	o. [N only])						
1	Description	Fire Water	Pump (1 No	. [N only])				
		Dry Mount	ed on DOL/\	/FD. Duty Po	oint ? m3/h	@ ? Bar[g] ⁻	TDH	
	(Cast Iron Housing; Cast Iron Impeller)							
2	No. of Pumps	No.	1	1	1	1	1	
3	Configuration	d/a/s	1 No. (1 du	ty only [N +	Boxed spar	e])		
4	Duty Flowrate	m3/h						Duty Point m3/h, bar
5	Head	bar						
6	Efficiency	%						
7	Motor Rating, Rated Power P2	kW						
8	Speed	rpm						
9	Manufacturer	-						
10	Model	-						
11	Material	-						
12	Gross Weight/unit	kg						
13	Pump Curve							

Ref	Description	Unit	Turndown	Ave	Peak	Max	Design	Comments			
			(Min.)								
E & Soda Ach Carrier Water Rumps (1 No. [N. only]) (Pro & Post all Correction)											

5.6 Soda Ash Carrier Water Pumps (1 No. [N only]) {Pre & Post pH Correction}

5.7 Alum Carrier Water Pumps (1 No. [N only])

5.8 Polymer Carrier Water Pumps (1 No. [N only])

5.9 Chlorine Carrier Water Pumps (1 No. [N only])

GENERAL LINE SIZING CALCULATION

AWA/KAIPARA DISTRICT COUNCIL

210507 Dargaville WTP Capacity Assessment

LIQUID LINE SIZING	3
--------------------	---

P&ID No.	NB	Li	ne No.		Liquid Type Code	Line Sch	Line ID (mm)	Pipe Roughness (mm)	Flow Rate (m3/h)	Pressure (barg)	Density (kg/m3)	Viscosity cP	Friction factor	Reynolds No. (Re)	Veloo Actual	city (m/s) Allowable	Pressure Actual
<u>Kaipara</u> Raw Feed Line (Min) Raw Feed Line (Ave) Raw Feed Line (Peak) Raw Feed Line (Max) Raw Feed Line (Design)	250 250 250 250 250	HL HL HL HL	1C1 1C1 1C1 1C1 1C1	SS SS SS SS	U U U U	80 80 80 80 80	264.67 264.67 264.67 264.67 264.67	0.04572 0.04572 0.04572 0.04572 0.04572	100.0 130.0 182.0 210.0 300.0	4 4 4 4	1000 1000 1000 1000 1000	1 1 1 1	1.80E-02 1.73E-02 1.65E-02 1.62E-02 1.55E-02	1.34E+05 1.74E+05 2.43E+05 2.81E+05 4.01E+05	0.50 0.66 0.92 1.06 1.51	2.5 2.5 2.5 2.5 2.5 2.5	0.009 0.014 0.026 0.034 0.067
	VAPOUR TYPE CODES							LIQUID TYPE CODES									
	A B C	AVapour line - continuous operationEBVapour line - Intimitant operationFCCompressor suctionGDCompressor dischargeH				Safety and blowdown inlet Safety and blowdown outlet Flare header			P Pump Suction Bo Q Pump Suction No R Gravity Flow & Re S Pump (contrifued)			Boiling Liquid Non-Boiling Liquid & Reboiler liquid feed line			Pump (centri Water Unit Line Boi		
	B Vapour line - Intimitant operation F C Compressor suction G D Compressor discharge H				F G H	Safety and blov Flare header Column Overhe		Q Pump Suction Non-Boiling Liquid R Gravity Flow & Reboiler liquid feed line S Pump (centrifugal) Discharge Low Pres 3 Note Maximum pressure					U V W	Water Unit Lir Unit Lir			
			voidolty	Justu				/			NOTES						in 0 /0 of the 30

C=195 (SI units), density is in kg/m3 and velocity is in m/s

2 For two phase flow use mixed density and furhter calculations should be carried out to check in best flow regime.

NOTES

4 For diphasic lines with significant quantities of liquid (ie upstream of Flare KO drum) pv^2 should be less than 50000 and mach<0.25

25/06/2021 Sheet 1 of 1

Drop (bar/100m) Allowable 0.15 0.15 0.15 0.15 0.15 rifugal) Discharge High Pres. iling Liquid on-Boiling Liquid t pressure (API521)